
SimPose-ium file formats

Notation:

All the SimPose-ium specific files are text files.

The description of these files is in terms of combinations of 'tokens', which may be
individual characters, keywords or primitives types.

In the following descriptions:
§ names in < >'s represent primitive types (see below) or previously defined tokens

made up of combinations of other tokens. To make the descriptions more
meaningful, the token or type name may optionally be followed by a label - to
indicate the purpose of the value. E.g. <int-NumberOfPoses> is an integer that is
used to represent the number of poses in a pose library.

§ *<int-n> means repeat the previous token 'n' time. The <int> may be explicit (e.g.
*10) or may be a label (e.g. *NumberOfPoses)

§ *(<int-m>..<int-n>) means repeat the previous token between 'm' and 'n' times.
This occurs where the file may contain an arbitary number of similar tokens
(usually all starting with the same character or string), the list being terminated by
the first token of a different type.

§ \n is a significant newline character
§ with the above exceptions, all other characters appear, as written, in the files

Tokens are defined as:

<NewToken> = … some combination of previously defined tokens …

Primitive types:

<int> an integer (may be signed)
<float> a floating point value - usually to 6 decimal places
<string> all characters to the end of the current line are treated as a string.

This is usually used for names, which can include spaces. No provision
is made for control characters or escape sequences, i.e. \t is those two
characters not a tab. Note that when SimPose-ium reads a string, it also
reads the newline character from the file, but this is not stored as part
of the string

A pose

This isn't actually a primitive type, but is used in several of the file formats. Its
description involves two additional new tokens:

<vector> = | <float-X> <float-Y> <float-Z> | \n

<quaternion> = | <float-X> <float-Y> <float-Z> <float-S> | \n

That is a <vector> is three floats on a line, that starts and ends with '|'. The three
floats represent the X, Y and Z components of the vector, in some appropriate units.

A <quaternion> is similar, but with four floats. Quaternions are always normalised, so
(x*x + y*y + z*z + s*s = 1.0)

<pose> = Time <int-time>
<vector> *2
<quaternion> *29

The Time value has different interpretations in different files, normally (as in a KFD
file) it is the time in an animation when the pose applies.

The two vectors are the translation of the ROOT and PELVIS in the pose (in that
order)

The 29 quaternions define the rotations for the 29 joints in the order defined in the
adult skeleton file.

The Pose Library (*.PSL)

There are actually two versions of the pose library:
§ those created by SimPose-ium V4 and earlier, and
§ those from V5.0 and later.
V5.0 and later can read the earlier format, but V4 and earlier cannot read the new
format.

Both use:

<namedpose> = <string-PoseName>
<pose>

The V4 and earlier format is:

POSELIBRARY <int-NumberOfPoses> \n
<namedpose> *NumberOfPoses

In this format, the 'time' value in each pose is ignored.

The V5 and later format is:

POSELIBRARY2 <int-NumberOfPoses > <int-NumSubStr> \n
<namedpose> *NumberOfPoses
<string> *NumSubStr

For each named pose, the 'time' value is interpreted as:
 0: pose applies to the adult skeleton only
 1: pose applies to the child skeleton only
-1: pose can be applied to either skeleton

- means the pose was imported from a library in the old format

NumSubStr is twice the number of SubSets defined in the library. That is, each
SubSet is defined by two strings. The first is its name, the second consists of 32
characters.

The first character is '0' or '1':
 '0': SubSet applies to the adult skeleton only
 '1': SubSet applies to the child skeleton only

The other 31 characters refer to possible joint translations and rotations, in the order
ROOT translation, PELVIS translation, and 29 joint rotations in the same order as the
pose quaternions. The translation/rotation is either required '1' or can be ignored '0'.

The Keyframe File Format (*.KFD)

The Keyframe file format is:

KeyFrame <int-NumberOfKeys> <int-Frames> <int-SequenceLength> \n
s <string-StartPoseName>
e <string- EndPoseName>
<pose> *NumberofKeys

SequenceLength is the number of animation frames in a complete execution of the
animation. That is, the length of the animation in seconds times 30.

Frames is the number of animation frames defined by the key frame poses. For a
'translation' animation, this is the same as SequenceLength, but for a 'bounce' it if half
SequenceLength (SequenceLength is always even).

NumberOfKeys is the number of KeyFrame poses defined in the file.

StartPoseName: If this name exists (i.e. the second line may be just "s" on its own),
it means that the KeyFrame animation was defined to start with a specific pose
selected from a Pose library. When the KeyFrame animation is reloaded, if SimPose-
ium has a Pose library loaded that contains a pose of that name, the pose at time=0
will be taken from the library, rather than the data in the KFD file.

EndPoseName: If this name exists (i.e. the third line may be just "e" on its own), it
means that the KeyFrame animation was defined to end with a specific pose selected
from a Pose library. When the KeyFrame animation is reloaded, if SimPose-ium has a
Pose library loaded that contains a pose of of that name, the pose at time=Frames-1
will be taken from the library, rather than the data in the KFD file.

The reason for the above is that the poses at time=0 and time=Frames-1 provide the
links from one animation to another. Suppose a change is made to one of these 'link
poses' in the pose library, rather than having to change all the keyframe animations
that use that pose, this mechanism ensures that the latest version of the link pose is
always used.

The poses represent the pose of the Sim at various times during the animation
(indicated by the pose's time field). The first pose is always time=0, and the last
time=Frames-1. The other poses are ordered by time.

Note that: NumberOfKeys <= Frames
SequenceLength = Frames or SequenceLength = Frames*2
TimeOfPose[n-1] < TimeOfPose[n] < TimeOfPose[n+1]

The Animation Sequence File Format (*.SPS)

This file requires information about the Sims being displayed:

<object> = m <int-PartId> <string-MeshName>
t <int-PartId> <string-TextureName>

PartId Part index, currently 0 to 7. Note the mesh and texture should have
the same index. The parts are head, body, hands(*2) + up to 4 props

MeshName Name of the mesh file (.skn) that defines this object
TextureName Name of the texture file (.bmp) applied to this object

<figure> = f <int-Id> <int-Type> <int-Hidden> <int-Offset> <int-Skel> \n
<object-Part> *(4..8)
f - end \n

Id An index, currently 0 for Sim1 and 1 for Sim2
Type Age/Gender, 0=male, 1=female, 2=boy, 3=girl
Hidden 0=Visible, 1=Hidden
Offset When only one Sim is displayed or there is "no offset" selected, Offset=1

When two Sims are displayed with offset, one has Offset=0, the other =2
Skel The skeleton index, 0=adult 1=child
Part For each part of the Sim, define the mesh and texture required. Sims

should have at least 4 parts: head, body, left hand and right hand, and may
have upto four props attached.

The file also requires information about the nodes in the sequence 'trees'

<animation> = A <string-AnimName>

<node> = N <int-Typ> <int-Par> <int-Nxt> <int-Id> <int-M> <int-N> \n
<animation>*(0..2)

AnimName The name of an animation associated with this node (see table below)
Typ The type of this node (see table)
Par The Id of the parent of this node. 0 = no parent, i.e. the root node
Nxt The Id of the sibling of this node - i.e. the next node to be performed. 0

= no sibling, i.e. the last node in a sequence
Id A unique identifier for this node, 1+
M Parameter used for various purposes (see below)
N Parameter used for various purposes (see below)

The file format is:

SimPoseSPS 1 \n
 |Start \n

<node-Sim1>*(1..?)
|End \n
|Start \n
<node-Sim2>*(1..?)
|End \n
|Start \n
<node-BothSim>*(1..?)
|End \n
Selected <int-SelectedSeq> \n
<figure-Sim1>
<figure-Sim2>

Typ M N Animations
Unset -1 not used not used none
Root 0 not used not used none
Loop *n 1 not used N none
Loop *m..n 2 M N none
Random 3 not used not used none
Action 4 Animation

for Sim1
Animation
for Sim2

0, 1 or 2, depending on how many
of M and N are none-zero

Wait 5 not used not used none

M/N values for Action: -2 if the indicated Sim is not being displayed
 -1 if the animation being edited is to be used
 0+ if an animation file (kfd or cfp) is to be used

The order of writing nodes is such that if the sequence tree looks like:-

A-----B-----C
 | | |
 | | D
 | | |
 | | H
 | |
 | E
 |

 F----G

Note that there is an invisible root node, R, that is the parent of A and F.

When a node is written, the siblings of the node are written before that node's data
(e.g. because A needs to identify F as its sibling, F has to be written before A).
Similarly, the node's data is written before that of its children, so the children can
refer to it as their parent.

So the above diagram is written as follows (considering Par, Nxt and Id only) - the
rest of the node data in line would refer to the node in bold

Par Nxt Id Comment
 0 0 R The root has no siblings or parent
 R 0 F After the root, A needs to be written, but as A has a

sibling, the sibling must be written first. Note that all
children point back to the same parent

 F 0 G
 R F A
 A 0 E
 A E B
 B 0 H
 B H D
 B D C

